Previous versions of AlphaGo initially trained on thousands of human amateur and professional games to learn how to play Go. AlphaGo Zero skips this step and learns to play simply by playing games against itself, starting from completely random play. In doing so, it quickly surpassed human level of play and defeated the previously published champion-defeating version of AlphaGo by 100 games to 0.
If similar techniques can be applied to other structured problems, such as protein folding, reducing energy consumption or searching for revolutionary new materials, the resulting breakthroughs have the potential to positively impact society.
(Profesor David Silver)
Hace unos meses Google DeepMind hizo público uno de sus resultados más asombrosos: una versión del modelo neuronal que fue capaz de derrotar al campeón del mundo de Go, solo que esta vez no necesitaron hacer uso de ningún aprendizaje supervisado de juegos entre humanos (hablé en este mismo blog en esta otra entrada con más profundidad sobre el asunto).
El modelo era capaz de aprender a jugar cual tabula rasa a partir exclusivamente de su propia experiencia jugando contra sí mismo una y otra vez. Pues bien, siguiendo esta línea de pensamiento he realizado por mi cuenta dos versiones de estas ideas para demostrar su validez (utilizando la librería Keras para Python). En primer lugar realicé una versión con un modelo neuronal capaz de aprender a jugar por sí solo al juego Conecta 4. El resultado ha sido espectacular (abajo encontrarás más información). En pocas horas una red neuronal aleatoria fue capaz de alcanzar un nivel de juego similar al de cualquier programa de IA tradicional...¡sólo que yo no tuve que explicarle ni indicarle ninguna estrategia de juego! La red neuronal se ajustó gradualmente conforme jugaba ella sola hasta el punto de superar mi propia capacidad de juego en muy poco tiempo.
El código fuente lo puedes descargar desde aquí: https://github.com/Zeta36/connect4-alpha-zeroTambién he realizado una versión de esta propuesta orientado al juego del ajedrez (https://github.com/Zeta36/chess-alpha-zero), aunque por motivos de falta de un Hardware lo suficientemente potente no he sido capaz de entrenar esta versión aún y no sé su capacidad real. Os dejo a continuación más información técnica sobre estos dos proyectos:
About
Connect4 reinforcement learning by AlphaGo Zero methods.
This project is based in two main resources:
- DeepMind's Oct19th publication: Mastering the Game of Go without Human Knowledge.
- The great Reversi development of the DeepMind ideas that @mokemokechicken did in his repo: https://github.com/mokemokechicken/reversi-alpha-zero
Environment
- Python 3.6.3
- tensorflow-gpu: 1.3.0
- Keras: 2.0.8
Modules
Reinforcement Learning
This AlphaGo Zero implementation consists of three worker
self
, opt
and eval
.self
is Self-Play to generate training data by self-play using BestModel.opt
is Trainer to train model, and generate next-generation models.eval
is Evaluator to evaluate whether the next-generation model is better than BestModel. If better, replace BestModel.
Evaluation
For evaluation, you can play chess with the BestModel.
play_gui
is Play Game vs BestModel using ASCII character encoding.
Data
data/model/model_best_*
: BestModel.data/model/next_generation/*
: next-generation models.data/play_data/play_*.json
: generated training data.logs/main.log
: log file.
If you want to train the model from the beginning, delete the above directories.
How to use
Setup
install libraries
pip install -r requirements.txt
If you want use GPU,
pip install tensorflow-gpu
set environment variables
Create
.env
file and write this.KERAS_BACKEND=tensorflow
Basic Usages
For training model, execute
Self-Play
, Trainer
and Evaluator
.Self-Play
python src/connect4_zero/run.py self
When executed, Self-Play will start using BestModel. If the BestModel does not exist, new random model will be created and become BestModel.
options
--new
: create new BestModel--type mini
: use mini config for testing, (seesrc/connect4_zero/configs/mini.py
)
Trainer
python src/connect4_zero/run.py opt
When executed, Training will start. A base model will be loaded from latest saved next-generation model. If not existed, BestModel is used. Trained model will be saved every 2000 steps(mini-batch) after epoch.
options
--type mini
: use mini config for testing, (seesrc/connect4_zero/configs/mini.py
)--total-step
: specify total step(mini-batch) numbers. The total step affects learning rate of training.
Evaluator
python src/connect4_zero/run.py eval
When executed, Evaluation will start. It evaluates BestModel and the latest next-generation model by playing about 200 games. If next-generation model wins, it becomes BestModel.
options
--type mini
: use mini config for testing, (seesrc/connect4_zero/configs/mini.py
)
Play Game
python src/connect4_zero/run.py play_gui
When executed, ordinary chess board will be displayed in ASCII code and you can play against BestModel.
Tips and Memo
GPU Memory
Usually the lack of memory cause warnings, not error. If error happens, try to change
per_process_gpu_memory_fraction
in src/worker/{evaluate.py,optimize.py,self_play.py}
,tf_util.set_session_config(per_process_gpu_memory_fraction=0.2)
Less batch_size will reduce memory usage of
opt
. Try to change TrainerConfig#batch_size
in NormalConfig
.Model Performance
The following table is records of the best models.
best model generation | winning percentage to best model | Time Spent(hours) | note |
---|---|---|---|
1 | - | - | |
2 | 100% | 1 | |
3 | 84,6% | 1 | |
4 | 78,6% | 2 | This model is good enough to avoid naive losing movements |
5 | 100% | 1 | The NN learns to play always in the center when it moves first |
6 | 100% | 4 | The model now is able to win any online Connect4 game with classic AI I've found |