Ir al contenido principal

Revisión del experimento en favor de la teoría de Jeremy England (mediante computación evolutiva)

"You start with a random clump of atoms, and if you shine light on it for long enough, it should not be so surprising that you get a plant."
Jeremy England (2014), interview commentary with Natalie Wolchover

Hace unos meses terminé de estudiar a fondo el interesante trabajo que el físico Jeremy England está realizando en el MIT (Massachusetts Institute of Technology). En mi blog he divulgado todo lo referente a este trabajo con mucho nivel de detalle, siendo quizás esta entrada el mejor resumen de su teoría.

En un intento de apoyar su propuesta de abiogénesis, realicé un experimento de simulación por computador siguiendo la siguiente propuesta:

1) Programamos un sistema físico que simule lo mejor posible la realidad física.
2) Programamos un modo de calcular la energía del sistema conforme el sistema evoluciona en el tiempo.
3) Procedemos a buscar sistemas complejos mediante computación evolutiva.
4) Calculamos el calor disipado en la formación de tales sistemas ordenados.
5) Estudiamos si existe correlación en esta simulación, entre la complejidad alcanzada y el calor disipado.

Y para reforzar aún más el estudio experimental, procedemos de nuevo, pero sustituyendo el paso 3) y 4) por lo siguiente:

3) Procedemos a buscar sistemas que disipen poco calor mediante computación evolutiva.
4) Calculamos la complejidad del sistema cuando se disipa poco calor.

Si la correlación propuesta entre complejidad y calor disipado es correcta, los sistemas complejos deberán de ir siempre (en la práctica) acompañados de una gran cantidad de calor disipado (energía útil consumida).

¡Y fue precisamente esto lo que he observado cuando he realizado este experimento!

Revisión del código fuente.

Puedes obtener más información sobre este trabajo en el enlace original del artículo que escribí al respecto, pero quiero introducir a continuación la revisión del código fuente que desinteresadamente ha realizado un lector del blog. Carlos Manuel se ha encargado de poner un poco en limpio mi código fuente original, y ha añadido comentarios y algunas nuevas gráficas que clarifican aún más el tema tratado.

Os dejo un enlace al repositorio Git que Carlos ha creado para compartir el programa: https://github.com/CarlosManuelRodr/LennardJones-Evolutivo

Trabajo futuro.

Comentar también, que actualmente estoy trabajando en una nueva versión de este experimento, pero utilizando simulaciones en 3D (en lugar de las 2D del código previo). En cuanto tenga algo consistente escribiré una nueva entrada ;).

Un saludo a todos.

Entradas populares de este blog

LeelaFish: cómo usar una red neuronal para sustituir la mejor función de evaluación de ajedrez hecha a mano por programadores humanos

LeelaFish UCI chess playing engine derived from Stockfish and LeelaChess Zero:  https://github.com/LeelaChessZero ,  https://github.com/official-stockfish/Stockfish Introduction This is a chess engine based in the Stockfish tree search but where we use the LCZero value head as evaluation function. So in this project we are just using the Stockfish code but replacing the human developed evaluation function for the neural network value head of the LeelaChess Zero project. This is a kind of experiment in which we try to figure out if the results are good even without the use of the MCTS LCZero does. Results Results are very promising and in a 1:1 ratio (when the number of nodes used by the original Stockfish or LCZero are forced to be equal to the number of nodes used by LeelaFish ) our development is able to beat both SF and LCZero. We used for these tests the LCZero network tesnet 10510. One thing is clear: the value head of the network is as good as the orig...

Random memory adaptation model inspired by the paper: "Memory-based parameter adaptation (MbPA)"

Os dejo a continuación el contenido de un trabajo de investigation sobre machine learning que he realizado en mi escaso tiempo libre: https://github.com/Zeta36/random-memory-adaptation ------------------------------------------------------------------------------------------------------------------------------------------------------------------ Introduction. I present in this repository a (very simple) random memory adaptation model (RMA) inspired by the Google DeepMind paper: "Memory-based parameter adaptation (MbPA)" ( https://arxiv.org/pdf/1802.10542.pdf ) In the paper, point 4.1. CONTINUAL LEARNING: SEQUENTIAL DISTRIBUTIONAL SHIFT (inside experiments and results), they study the improvements their model suppose in relation to the catastrophic forgetting problem. They explored the effects of their model (MbPA) on continual learning, i.e. when dealing with the problem of sequentially learning multiple tasks without the ability to revisit a task. For this purposed they use...

Replicando el desarrollo de Google DeepMind: AlphaGo Zero

Previous versions of AlphaGo initially trained on thousands of human amateur and professional games to learn how to play Go. AlphaGo Zero skips this step and learns to play simply by playing games against itself, starting from completely random play. In doing so, it quickly surpassed human level of play and defeated the previously published champion-defeating version of AlphaGo by 100 games to 0. If similar techniques can be applied to other structured problems, such as protein folding, reducing energy consumption or searching for revolutionary new materials, the resulting breakthroughs have the potential to positively impact society.  (Profesor David Silver) Hace unos meses   Google DeepMind   hizo público uno de sus resultados más asombrosos: una versión del modelo neuronal que fue capaz de derrotar al campeón del mundo de   Go , solo que esta vez no necesitaron hacer uso de ningún aprendizaje supervisado de juegos entre humanos (hablé en este mismo blog en   ...